Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R.) 1–18 (Springer, 1992).
Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).
Google Scholar
Whipple, K. X., Kirby, E. & Brocklehurst, S. H. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999).
Google Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001).
Google Scholar
Braun, J. & Willett, S. D. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 180, 170–179 (2013).
Google Scholar
Yuan, X. P., Braun, J., Guerit, L., Rouby, D. & Cordonnier, G. A new efficient method to solve the stream power law model taking into account sediment deposition. J. Geophys. Res. Earth Surface 124, 1346–1365 (2019).
Google Scholar
Thieulot, C. FANTOM: two-and three-dimensional numerical modelling of creeping flows for the solution of geological problems. Phys. Earth Planet. Inter. 188, 47–68 (2011).
Google Scholar
Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).
Google Scholar
Beaumont, C., Nguyen, M. H., Jamieson, R. A. & Ellis, S. Crustal flow modes in large hot orogens. Geol. Soc. Spec. Publ. 268, 91–145 (2006).
Google Scholar
Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 104, 17661–17674 (1999).
Google Scholar
Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651 (2003).
Google Scholar
Koons, P. O. The topographic evolution of collisional mountain belts – a numerical look at the Southern Alps, New Zealand. Am. J. Sci. 289, 1041–1069 (1989).
Google Scholar
Molnar, P. & England, P. Late Cenozoic uplift of mountain-ranges and global climate change – chicken or egg. Nature 346, 29–34 (1990).
Google Scholar
Tucker, G. E. & Bras, R. L. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resour. Res. 36, 1953–1964 (2000).
Google Scholar
Hartshorn, K., Hovius, N., Dade, W. B. & Slingerland, R. L. Climate-driven bedrock incision in an active mountain belt. Science 297, 2036–2038 (2002).
Google Scholar
Whipple, K. X. & Meade, B. J. Orogen response to changes in climatic and tectonic forcing. Earth Planet. Sci. Lett. 243, 218–228 (2006).
Google Scholar
Willett, S. D., Schlunegger, F. & Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–616 (2006).
Google Scholar
Hilley, G. E. et al. Earth’s topographic relief potentially limited by an upper bound on channel steepness. Nat. Geosci. 12, 828–832 (2019).
Google Scholar
Baldwin, J. A., Whipple, K. X. & Tucker, G. E. Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. J. Geophys. Res. Solid Earth 108, 2158 (2003).
Egholm, D. L., Knudsen, M. F. & Sandiford, M. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature 498, 475–478 (2013).
Google Scholar
Molnar, P. & Lyon-Caen, H. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol. Soc. Am. Spec. Pap. 218, 179–207 (1988).
Sandiford, M. & Powell, R. Some isostatic and thermal consequences of the vertical strain geometry in convergent orogens. Earth Planet. Sci. Lett. 98, 154–165 (1990).
Google Scholar
Zhou, S. H. & Sandiford, M. On the stability of isostatically compensated mountain belts. J. Geophys. Res. Solid Earth 97, 14207–14221 (1992).
Google Scholar
Vanderhaeghe, O., Medvedev, S., Fullsack, P., Beaumont, C. & Jamieson, R. A. Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. Geophys. J. Int. 153, 27–51 (2003).
Google Scholar
Wolf, S. G. & Huismans, R. S. Mountain building or backarc extension in ocean-continent subduction systems: a function of backarc lithospheric strength and absolute plate velocities. J. Geophys. Res. Solid Earth 124, 7461–7482 (2019).
Google Scholar
Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci. 32, 151–185 (2004).
Google Scholar
Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001).
Google Scholar
Molnar, P., Anderson, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 112, F03014 (2007).
Starke, J., Ehlers, T. A. & Schaller, M. Latitudinal effect of vegetation on erosion rates identified along western South America. Science 367, 1358–1361 (2020).
Google Scholar
Ellis, S., Fullsack, P. & Beaumont, C. Oblique convergence of the crust driven by basal forcing -implications for length-scales of deformation and strain partitioning in orogens. Geophys. J. Int. 120, 24–44 (1995).
Google Scholar
Batt, G. E. & Braun, J. The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modelling. Geophys. J. Int. 136, 403–420 (1999).
Google Scholar
Norris, R. J. & Cooper, A. F. Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J. Struct. Geol. 23, 507–520 (2001).
Google Scholar
Little, T. A. Transpressive ductile flow and oblique ramping of lower crust in a two-sided orogen: insight from quartz grain-shape fabrics near the Alpine fault, New Zealand. Tectonics 23, TC2013 (2004).
Jiao, R., Herman, F. & Seward, D. Late Cenozoic exhumation model of New Zealand: impacts from tectonics and climate. Earth Sci. Rev. 166, 286–298 (2017).
Google Scholar
Herman, F., Cox, S. C. & Kamp, P. J. J. Low-temperature thermochronology and thermokinematic modeling of deformation, exhumation, and development of topography in the central Southern Alps, New Zealand. Tectonics 28, https://doi.org/10.1029/2008TC002367 (2009).
Suppe, J. A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China 23, 46–55 (1980).
Brown, D., Alvarez-Marron, J., Schimmel, M., Wu, Y. M. & Camanni, G. The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics 31, TC5013 (2012).
Brown, D. et al. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt. Tectonics 36, 1275–1294 (2017).
Google Scholar
Simoes, M. et al. Mountain building in Taiwan: a thermokinematic model. J. Geophys. Res. Solid Earth 112, https://doi.org/10.1029/2006JB004824 (2007).
Van Avendonk, H. J. A. et al. Deep crustal structure of an arc-continent collision: constraints from seismic traveltimes in central Taiwan and the Philippine Sea. J. Geophys. Res. Solid Earth 119, 8397–8416 (2014).
Google Scholar
DeCelles, P. et al. Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (Geological Society of America, 2015).
Replumaz, A., Negredo, A. M., Guillot, S., van der Beek, P. & Villasenor, A. Crustal mass budget and recycling during the India/Asia collision. Tectonophysics 492, 99–107 (2010).
Google Scholar
Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).
Google Scholar
Schmalholz, S. M., Medvedev, S., Lechmann, S. M. & Podladchikov, Y. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy. Geophys. J. Int. 197, 680–696 (2014).
Google Scholar
Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996).
Google Scholar
Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. Solid Earth 115, https://doi.org/10.1029/2008JB006126 (2010).
Oncken, O. et al. in The Andes. Frontiers in Earth Sciences (eds Oncken, O. et al.) 3–27 (Springer, 2006).
Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007).
Google Scholar
Wobus, C. W., Hodges, K. V. & Whipple, K. X. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31, 861–864 (2003).
Google Scholar
Kirby, E. & Whipple, K. X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 44, 54–75 (2012).
Google Scholar
Curry, M. E., van der Beek, P., Huismans, R. S., Wolf, S. G. & Muñoz, J. A. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet. Sci. Lett. 515, 26–37 (2019).
Google Scholar
Harel, M.-A., Mudd, S. & Attal, M. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 268, 184–196 (2016).
Google Scholar
Stock, J. D. & Montgomery, D. R. Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. Solid Earth 104, 4983–4993 (1999).
Google Scholar
Guerit, L. et al. Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes. Geology 47, 853–856 (2019).
Google Scholar
Densmore, A. L., Allen, P. A. & Simpson, G. Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res. Earth Sci. 112, F01002 (2007).
Armitage, J. J., Jones, T. D., Duller, R. A., Whittaker, A. C. & Allen, P. A. Temporal buffering of climate-driven sediment flux cycles by transient catchment response. Earth Planet. Sci. Lett. 369, 200–210 (2013).
Google Scholar
England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 70, 295–321 (1982).
Google Scholar
England, P. & McKenzie, D. Correction to – A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 73, 523–532 (1983).
Google Scholar
Wobus, C. et al. in Tectonics, Climate, and Landscape Evolution (eds Willett, S. D., Hovius, N., Brandon, M. T. & Fisher, D. M.) 55–74 (Geological Society of America, 2006).
Gleason, G. C. & Tullis, J. A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics 247, 1–23 (1995).
Google Scholar
Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103, 975–984 (1998).
Google Scholar
Karato, S. & Wu, P. Rheology of the upper mantle – a synthesis. Science 260, 771–778 (1993).
Google Scholar
Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997).
Google Scholar