• Gatesy, S. M. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J.) 219–234 (Cambridge University Press, 1995).

  • Hutchinson, J. R. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zool. J. Linnean Soc. 131, 123–168 (2001).

    Article 

    Google Scholar 

  • Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Museum Nat. Hist. 371, 1–206 (2012).

    Article 

    Google Scholar 

  • Ostrom, J. H. On a new specimen of the Lower Cretaceous theropod dinosaur Deinonychus antirrhopus. Breviora 439, 1–21 (1976).

    Google Scholar 

  • Bunge, A. Untersuchungen zur Entwickelungsgeschichte des Beckengürtels der Amphibien, Reptilien, und Vögel. PhD thesis, Universität Dorpat (1880).

  • Johnson, A. On the development of the pelvic girdle and skeleton of the hind limb of the chick. Q. J. Microsc. Sci. 23, 399–411 (1883).

    Google Scholar 

  • Mehnert, E. Untersuchungen über die entwisklung des os pelvis der vögel. Morphologisches Jahrbuch 13, 259–295 (1887).

    Google Scholar 

  • Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1977).

  • Mayr, E. Recapitulation reinterpreted: the somatic program. Q. Rev. Biol. 69, 223–232 (1994).

    Article 

    Google Scholar 

  • Abzhanov, A. von Baer’s law for the ages: lost and found principles of developmental evolution. Trends Genet. 29, 712–722 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Diogo, R., Smith, C. M. & Ziermann, J. M. Evolutionary developmental pathology and anthropology: a new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev. Dyn. 244, 1357–1374 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Ksepka, D. T. Feathered dinosaurs. Curr. Biol. 30, R1347–R1353 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lowe, C. B., Clarke, J. A., Baker, A. J., Haussler, D. & Edwards, S. V. Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol. Biol. Evol. 32, 23–28 (2015).

  • Bhullar, B.-A. S. et al. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 56, 389–403 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Fabbri, M. et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1, 1543–1550 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Bhullar, B.-A. S. et al. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 69, 1665–1677 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).

    PubMed 
    Article 

    Google Scholar 

  • O’Connor, P. M. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs. J. Exp. Zool. A 311A, 629–646 (2009).

    Article 

    Google Scholar 

  • Heers, A. M. & Dial, K. P. From extant to extinct: locomotor ontogeny and the evolution of avian flight. Trends Ecol. Evol. 27, 296–305 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Mayr, G. Evolution of avian breeding strategies and its relation to the habitat preferences of Mesozoic birds. Evol. Ecol. 31, 131–141 (2017).

    Article 

    Google Scholar 

  • Gatesy, S. M. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16, 170–186 (1990).

    Article 

    Google Scholar 

  • Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Hutchinson, J. R. The evolution of locomotion in archosaurs. C. R. Palevol. 5, 519–530 (2006).

    Article 

    Google Scholar 

  • Hutchinson, J. R. & Gatesy, S. M. Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology 26, 734–751 (2000).

    Article 

    Google Scholar 

  • Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).

  • Gegenbaur, C. Gundriss der Vergleichenden Anatomie (Engelmann, 1878).

  • Huxley, T. H. Further evidence of the affinity between the dinosaurian reptiles and birds. Q. J. Geol. Soc. Lond. 26, 12–31 (1870).

    Article 

    Google Scholar 

  • Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Romer, A. S. The development of the thigh musculature of the chick. J. Morphol. Physiol. 43, 347–385 (1927).

    Article 

    Google Scholar 

  • Schroeter, S. & Tosney, K. W. Spatial and temporal patterns of muscle cleavage in the chick thigh and their value as criteria for homology. Am. J. Anat. 191, 325–350 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kardong, K. V. Vertebrates: Comparative Anatomy, Function, Evolution 8th edn (McGraw-Hill Education, 2019).

  • Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Egawa, S., Saito, D., Abe, G. & Tamura, K. Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum. R. Soc. Open Sci. 5, 180604 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Hutchinson, J. R. The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comp. Biochem. Physiol. A 133, 1051–1086 (2002).

    Article 

    Google Scholar 

  • Giffin, E. B. Postcranial paleoneurology of the Diapsida. J. Zool. 235, 389–410 (1995).

    Article 

    Google Scholar 

  • Carpenter, E. M. Hox genes and spinal cord development. Dev. Neurosci. 24, 24–34 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaunt, S. J. Evolutionary shifts of vertebrate structures and Hox expression up and down the axial series of segments: a consideration of possible mechanisms. Int. J. Dev. Biol. 44, 109–117 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Diogo, R., Ziermann, J., Molnar, J., Siomava, N. & Abdala, V. Muscles of Chordates: Development, Homologies and Evolution (Taylor & Francis, 2018).

  • Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Olson, E. C. & Miller, R. L. Morphological Integration (University of Chicago Press, 1958).

  • Schlosser, G. in Modularity in Development and Evolution (eds Schlosser, G. & Wagner, G. P.) 519–582 (University of Chicago Press, 2004).

  • Lee, H. W., Esteve-Altava, B. & Abzhanov, A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci. Rep. 10, 16138 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Felice, R. N. et al. Evolutionary integration and modularity in the archosaur cranium. Integr. Comp. Biol. 59, 371–382 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).

    CAS 
    Article 

    Google Scholar 

  • Iijima, M. & Kobayashi, Y. Convergences and trends in the evolution of the archosaur pelvis. Paleobiology 40, 608–624 (2014).

    Article 

    Google Scholar 

  • Adams, D. C. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 7, 565–572 (2016).

    Article 

    Google Scholar 

  • Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).

    Article 

    Google Scholar 

  • Giffin, E. B. Endosacral enlrgements in dinosaurs. Mod. Geol. 16, 101–112 (1991).

    Google Scholar 

  • Giffin, E. B. Paleoneurology: reconstructing the nervous systems of dinosaurs. Paleontol. Soc. Special Pub. 7, 229–242 (1994).

    Article 

    Google Scholar 

  • Ferguson, M. W. J. in Biology of the Reptilia Vol. 14 (eds Gans, C. et al.) 329–492 (John Wiley and Sons, 1985).

  • Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ainsworth, S. J., Stanley, R. L. & Evans, D. J. R. Developmental stages of the Japanese quail. J. Anat. 216, 3–15 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Dingerkus, G. & Uhler, D. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol. 52, 229–232 (1977).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ovchinnikov, D. Alcian blue/Alizarin red staining of cartilage and bone in mouse. Cold Spring Harbor Protoc. 2009, pdb.prot5170 (2009).

    Article 

    Google Scholar 

  • Rigueur, D. & Lyons, K. M. Whole-mount skeletal staining. Methods Mol. Biol. 1130, 113–121 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schultze, O. Ueber herstellung und conservirung durchsichtiger embryonen zum stadium der skeletbildung. Anatomischer Anzeiger 13, 3–5 (1897).

    Google Scholar 

  • Horobin, R. W. in Educational Guide Special Stains and H&E 2nd edn (eds Kumar, G. L. & Kiernan, J. A.) 159–166 (Carpinteria, 2010).

  • Carril, J., Tambussi, C. P. & Rasskin-Gutman, D. The network ontogeny of the parrot: altriciality, dynamic skeletal assemblages, and the avian body plan. Evol. Biol. 48, 41–53 (2021).

    Article 

    Google Scholar 

  • Maxwell, E. E. Comparative embryonic development of the skeleton of the domestic turkey (Meleagris gallopavo) and other galliform birds. Zoology 111, 1095–1113 (2008).

    Article 

    Google Scholar 

  • Maxwell, E. E. Ossification sequence of the avian order Anseriformes, with comparison to other precocial birds. J. Morphol. 269, 1095–1113 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Maxwell, E. E. & Harrison, L. B. Ossification sequence of the common tern (Sterna hirundo) and its implications for the interrelationships of the Lari (Aves, Charadriiformes). J. Morphol. 269, 1056–1072 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Maxwell, E. E. & Larsson, H. C. E. Comparative ossification sequence and skeletal development of the postcranium of palaeognathous birds (Aves: Palaeognathae). Zool. J. Linnean Soc. 157, 169–196 (2009).

    Article 

    Google Scholar 

  • Ikeda, T. et al. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone Mineral Metab. 23, 337–340 (2005).

    Article 

    Google Scholar 

  • Lefebvre, V., Behringer, R. R. & de Crombrugghe, B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 9, S69–S75 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cancedda, R., Castagnola, P., Cancedda, F. D., Dozin, B. & Quarto, R. Developmental control of chondrogenesis and osteogenesis. Int. J. Dev. Biol. 44, 707–714 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Eames, B. F., De La Fuente, L. & Helms, J. A. Molecular ontogeny of the skeleton. Birth Defects Res. C 69, 93–101 (2003).

    CAS 
    Article 

    Google Scholar 

  • Miller, E. J. & Matukas, V. J. Chick cartilage collagen: a new type of α1 chain not present in bone or skin of the species. Proc. Natl Acad. Sci. USA 64, 1264–1268 (1969).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Zhang, G., Eames, B. F. & Cohn, M. J. Evolution of vertebrate cartilage development. Curr. Topics Dev. Biol. 86, 15–42 (2009).

    CAS 
    Article 

    Google Scholar 

  • Ninomiya, Y., Showalter, A. & Olsen, B. in The Role of Extracellular Matrix in Development (ed. Trelstad, R. L.) 255–275 (Alan R. Liss, 1984).

  • Botelho, J. F., Smith-Paredes, D., Nuñez-Leon, D., Soto-Acuña, S. & Vargas, A. O. The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes. Proc. R. Soc. B 281, 20140765 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Botelho, J. F. et al. Skeletal plasticity in response to embryonic muscular activity underlies the development and evolution of the perching digit of birds. Sci. Rep. 5, 09840 (2015).

    Article 
    CAS 

    Google Scholar 

  • Huh, J. W., Laurer, H. L., Raghupathi, R., Helfaer, M. A. & Saatman, K. E. Rapid loss and partial recovery of neurofilament immunostaining following focal brain injury in mice. Exp. Neurol. 175, 198–208 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, 1997).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • Geomorph: software for geometric morphometric analyses (R package version 3.2.1) (2020).

  • Rohlf, F. J. The TPS series of software. Hystrix 26, 9–12 (2015).

    Google Scholar 

  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Article 

    Google Scholar 

  • Buser, T. J., Sidlauskas, B. L. & Summers, A. P. 2D or not 2D? Testing the utility of 2D vs. 3D landmark data in geometric morphometrics of the sculpin subfamily Oligocottinae (Pisces; Cottoidea). Anat. Rec. 301, 806–818 (2018).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: community ecology package (R package version 2.5-7). https://CRAN.R-project.org/package=vegan (2020).

  • Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24, 7–14 (2013).

    Google Scholar 

  • Theska, T., Sieriebriennikov, B., Wighard, S. S., Werner, M. S. & Sommer, R. J. Geometric morphometrics of microscopic animals as exemplified by model nematodes. Nat. Protoc. 15, 2611–2644 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53, 285–339 (1991).

    MathSciNet 
    MATH 

    Google Scholar 

  • Drake, A. G. & Klingenberg, C. P. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proc. Biol. Sci. 275, 71–76 (2008).

    PubMed 

    Google Scholar 

  • Friendly, M. HE plots for repeated measures designs. J. Stat. Softw. 37, 1–40 (2010).

    Article 

    Google Scholar 

  • Agnolin, F. L., Motta, M. J., Brissón Egli, F., Lo Coco, G. & Novas, F. E. Paravian phylogeny and the dinosaur–bird transition: an overview. Front. Earth Sci. 6, 252 (2019).

    Article 
    ADS 

    Google Scholar 

  • Erickson, G. M. et al. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS ONE 7, e31781 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Museum Nat. Hist. 352, 1–292 (2011).

    Article 

    Google Scholar 

  • Nesbitt, S. J. et al. A mid-Cretaceous tyrannosauroid and the origin of North American end-Cretaceous dinosaur assemblages. Nat. Ecol. Evol. 3, 892–899 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Pritchard, A. C. & Sues, H.-D. Postcranial remains of Teraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton. J. Syst. Paleontol. 17, 1745–1765 (2019).

    Article 

    Google Scholar 

  • Rauhut, O. W. M., Hübner, T. R. & Lanser, K.-P. A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: implications for theropod evolution and faunal turnover in the Jurassic. Palaeontologia Electronica 19, 29A (2016).

    Google Scholar 

  • Cau, A. The assembly of the avian body plan: a 160-million-year long process. Boll. Soc. Paleontol. Ital. 57, 1–25 (2018).

    Google Scholar 

  • Cau, A., Brougham, T. & Naish, D. The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): dromaeosaurid or flightless bird? PeerJ 3, e1032 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Perrin, A. Recherches sur les affinités zoologiques de l’Hatteria punctata. Ann. Sci. Nat. 20, 33–102 (1895).

    Google Scholar 

  • Osawa, G. Beitrage zur Anatomie der Hatteria punctata. Arch. Mikrosk. Anat. 51, 48–691 (1898).

    Google Scholar 

  • Gregory, W. K. & Camp, C. L. Studies in comparative myology and osteology III. Bull. Am. Museum Nat. Hist. 38, 447–563 (1918).

    Google Scholar 

  • Byerly, T. The myology of Sphenodon puncatum. Univ. Iowa Stud. Nat. Hist. 11, 3–51 (1925).

    Google Scholar 

  • Walker, A. D. in Problems in Vertebrate Evolution (eds Andrews, S. M. et al.) 319–358 (Linnean Society, 1977).

  • Rowe, T. B. Homology and evolution of the deep dorsal thigh musculature in birds and other reptilia. J. Morphol. 189, 327–346 (1986).

    PubMed 
    Article 

    Google Scholar 

  • Dilkes, D. W. Appendicular myology of the hadrosaurian dinosaur Maiasaura peeblesorum from the Late Cretaceous (Campanian) of Montana. Trans. R. Soc. Edin. 90, 87–125 (1999).

    Article 

    Google Scholar 

  • Carrano, M. T. & Hutchinson, J. R. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). J. Morphol. 253, 207–228 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Allen, V. et al. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia. J. Anat. 225, 569–582 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klinkhamer, A. J., Wilhite, D. R., White, M. A. & Wroe, S. Digital dissection and three-dimensional interactive models of limb musculature in the Australian estuarine crocodile (Crocodylus porosus). PLoS ONE 12, e0175079 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • George, J. C. & Berger, A. J. Avian Myology (Academic Press, 1966).

  • Vanden Berge, J. C. & Zweers, G. A. in Handbook of Avian Anatomy: Nomina Anatomica Avium (eds Baumel, J. J. et al.) 189–250 (Publications of the Nuttall Ornithological Club 23, 1993).

  • Wellnhofer, P. Archaeopteryx: The Icon of Evolution (Verlag Dr. Friedrich Pfeil, 2009).

  • Padian, K. & Chiappe, L. M. The origin of birds and their flight. Sci. Am. 278, 38–47 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Demuth, O. E., Rayfield, E. J. & Hutchinson, J. R. 3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria. Sci. Rep. 10, 15357 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Gilmore, C. W. Osteology of the carnivorous Dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus. Bull. US Natl Museum 110, 1–159 (1920).

    Google Scholar 

  • Barsbold, R., Osmólska, H., Watabe, M., Currie, P. J. & Tsogtbaatar, K. A new oviraptorosaur (Dinosauria, Theropoda) from Mongolia: the first dinosaur with a pygostyle. Acta Palaeontol. Polonica 45, 97–106 (2000).

    Google Scholar 

  • Sullivan, R. M., Jasinski, S. E. & Van Tomme, M. P. A. A new caenagnathid Ojoraptorsaurus boerei, n. gen., n. sp. (Dinosauria, Oviraptorosauria), from the Upper Ojo Alamo Formation (Naashoibito Member), San Juan Basin, New Mexico. New Mexico Museum Nat. Hist. Sci. Bull. 53, 418–428 (2011).

    Google Scholar 

  • Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 4019–4032 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alberch, P., Gould, S. J., Oster, G. F. & Wake, D. B. Size and shape in ontogeny and phylogeny. Paleobiology 5, 296–317 (1979).

    Article 

    Google Scholar 

  • Romer, A. S. The development of tetrapod limb musculature—the thigh of Lacerta. J. Morphol. 71, 251–298 (1942).

  • Source link

    Previous articleVegan Chocolate Mousse – Fraiche Living
    Next article8 Nutrisystem Summer Weight Loss Tips