Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).
Google Scholar
Chu, S. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).
Google Scholar
Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).
Google Scholar
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Google Scholar
Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Google Scholar
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).
Google Scholar
Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).
Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Google Scholar
Barry, J. F., McCarron, D., Norrgard, E., Steinecker, M. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).
Google Scholar
Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).
Google Scholar
Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).
Google Scholar
Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).
Google Scholar
Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).
Google Scholar
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Google Scholar
Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).
Google Scholar
Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. 525, 845–865 (2013).
Google Scholar
Wall, M., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).
Google Scholar
Augustovičová, L. D. & Bohn, J. L. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).
Google Scholar
Heazlewood, B. R. & Softley, T. P. Towards chemistry at absolute zero. Nat. Rev. Chem. 5, 125–140 (2021).
Google Scholar
Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).
Google Scholar
Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).
Google Scholar
Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).
Google Scholar
Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).
Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).
Google Scholar
Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).
Google Scholar
Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).
Google Scholar
Dickerson, C. E. et al. Franck–Condon tuning of optical cycling centers by organic functionalization. Phys. Rev. Lett. 126, 123002 (2021).
Google Scholar
Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys Rev. Lett. 118, 093201 (2017).
Google Scholar
Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).
Google Scholar
Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).
Google Scholar
Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).
Google Scholar
Baum, L. et al. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124, 133201 (2020).
Google Scholar
Augenbraun, B. L. et al. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys. 22, 022003 (2020).
Google Scholar
Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).
Google Scholar
Cheuk, L. W. et al. λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).
Google Scholar
Caldwell, L. et al. Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123, 033202 (2019).
Google Scholar
Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of Λ-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).
Google Scholar
Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).
Google Scholar
Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).
Google Scholar
Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).
Google Scholar
Jadbabaie, A., Pilgram, N. H., Klos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).
Zhu, M., Oates, C. W. & Hall, J. L. Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique. Phys. Rev. Lett. 67, 46–49 (1991).
Google Scholar
Barry, J. F., Shuman, E., Norrgard, E. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).
Google Scholar
Yeo, M. et al. Rotational state microwave mixing for laser cooling of complex diatomic molecules. Phys. Rev. Lett. 114, 223003 (2015).
Google Scholar
Hemmerling, B. et al. Laser slowing of CaF molecules to near the capture velocity of a molecular mot. J. Phys. B 49, 174001 (2016).
Google Scholar
Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).
Google Scholar
Baum, L. et al. Establishing a nearly closed cycling transition in a polyatomic molecule. Phys. Rev. A 103, 043111 (2021).
Google Scholar
Zhang, C. et al. Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. J. Chem. Phys. 155, 091101 (2021).
Google Scholar
Steinecker, M. H., McCarron, D. J., Zhu, Y. & DeMille, D. Improved radio-frequency magneto-optical trap of srf molecules. ChemPhysChem 17, 3664–3669 (2016).
Google Scholar
Berkeland, D. J. & Boshier, M. G. Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002).
Google Scholar
Tarbutt, M. Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 17, 015007 (2015).
Google Scholar
Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).
Google Scholar
Norrgard, E., McCarron, D., Steinecker, M., Tarbutt, M. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).
Google Scholar
Williams, H. et al. Characteristics of a magneto-optical trap of molecules. New J. Phys. 19, 113035 (2017).
Google Scholar
Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).
Google Scholar
Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).
Google Scholar
Devlin, J. A. & Tarbutt, M. R. Laser cooling and magneto-optical trapping of molecules analyzed using optical Bloch equations and the Fokker–Planck–Kramers equation. Phys. Rev. A 98, 063415 (2018).
Google Scholar
Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).
Google Scholar
Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. & Novikova, I.) Ch. 1 (World Scientific, 2015).
Dickerson, C. E. et al. Optical cycling functionalization of arenes. J. Phys. Chem. Lett. 12, 3989–3995 (2021).
Google Scholar
Augenbraun, B. L. Methods for Direct Laser Cooling of Polyatomic Molecules. PhD thesis, Harvard University (2021).
Oberlander, M. D. & Parson, J. M. Laser excited fluorescence study of reactions of excited Ca and Sr with water and alcohols: product selectivity and energy disposal. J. Chem. Phys. 105, 5806–5816 (1996).
Google Scholar
Lu, H.-I., Rasmussen, J., Wright, M. J., Patterson, D. & Doyle, J. M. A cold and slow molecular beam. Phys. Chem. Chem. Phys. 13, 18986–18990 (2011).
Google Scholar