Sachdev, S. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys. 75, 913–932 (2003).
Google Scholar
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).
Google Scholar
Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
Google Scholar
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).
Google Scholar
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Google Scholar
Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).
Google Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Google Scholar
Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
Google Scholar
Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2. J. Phys. Chem. Solids 53, 1259–1263 (1992).
Google Scholar
Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Phil. Mag. B 39, 229–244 (1979).
Google Scholar
Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).
Google Scholar
He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).
Google Scholar
Ribak, A. et al. Gapless excitations in the ground state of 1T-TaS2. Phys. Rev. B 96, 195131 (2017).
Google Scholar
Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).
Google Scholar
Mañas-Valero, S., Huddart, B. M., Lancaster, T., Coronado, E. & Pratt, F. L. Quantum phases and spin liquid properties of 1T-TaS2. npj Quantum Mater. 6, 69 (2021).
Google Scholar
Benedičič, I. et al. Superconductivity emerging upon Se doping of the quantum spin liquid 1T-TaS2. Phys. Rev. B 102, 054401 (2020).
Google Scholar
Murayama, H. et al. Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS2. Phys. Rev. Res. 2, 013099 (2020).
Google Scholar
Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).
Google Scholar
Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).
Google Scholar
Xu, G. et al. Holes in a quantum spin liquid. Science 289, 419–422 (2000).
Google Scholar
Wessel, S., Normand, B., Sigrist, M. & Haas, S. Order by disorder from nonmagnetic impurities in a two-dimensional quantum spin liquid. Phys. Rev. Lett. 86, 1086–1089 (2001).
Google Scholar
Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).
Google Scholar
Hu, W.-J., Gong, S.-S. & Sheng, D. N. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice. Phys. Rev. B 94, 75131 (2016).
Google Scholar
Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).
Google Scholar
Ng, T. K. & Varma, C. M. Spontaneous vortex phase discovered? Phys. Rev. Lett. 78, 330–333 (1997).
Google Scholar
Paulsen, C., Hykel, D. J., Hasselbach, K. & Aoki, D. Observation of the Meissner–Ochsenfeld effect and the absence of the meissner state in UCoGe. Phys. Rev. Lett. 109, 237001 (2012).
Google Scholar
Stolyarov, V. S. et al. Domain Meissner state and spontaneous vortex–antivortex generation in the ferromagnetic superconductor EuFe2(As0.79P0.21)2. Sci. Adv. 4, eaat1061 (2018).
Google Scholar
Sonin, E. B. & Felner, I. Spontaneous vortex phase in a superconducting weak ferromagnet. Phys. Rev. B 57, R14000–R14003 (1998).
Google Scholar
Jiao, W.-H., Tao, Q., Ren, Z., Liu, Y. & Cao, G.-H. Evidence of spontaneous vortex ground state in an iron-based ferromagnetic superconductor. npj Quantum Mater. 2, 50 (2017).
Google Scholar
Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
Google Scholar
Bojesen, T. A., Babaev, E. & Sudbø, A. Phase transitions and anomalous normal state in superconductors with broken time-reversal symmetry. Phys. Rev. B 89, 104509 (2014).
Google Scholar
Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).
Google Scholar
Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).
Google Scholar
Knigavko, A. & Rosenstein, B. Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors. Phys. Rev. B 58, 9354–9364 (1998).
Google Scholar
Nayak, A. K. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021).
Google Scholar
Grinenko, V. et al. State with spontaneously broken time-reversal symmetry above the superconducting phase transition. Nat. Phys. 17, 1254–1259 (2021).
Google Scholar
Fauqué, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).
Google Scholar
Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).
Google Scholar
Sonier, J. E. et al. Anomalous weak magnetism in superconducting YBa2Cu3O6+x. Science 292, 1692–1695 (2001).
Google Scholar
Zhang, J. et al. Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa2Cu3Oy. Sci. Adv. 4, eaao5235 (2018).
Google Scholar
Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).
Google Scholar
Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).
Google Scholar
Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).
Google Scholar
Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).
Google Scholar
König, E. J., Randeria, M. T. & Jäck, B. Tunneling spectroscopy of quantum spin liquids. Phys. Rev. Lett. 125, 267206 (2020).
Google Scholar
Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).
Google Scholar
Gardner, B. W. et al. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 72, 2361–2364 (2001).
Google Scholar
Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 53704 (2008).
Google Scholar