Chester, F. M. & Chester, J. S. Ultracataclasite structure and friction processes of the Punchbowl Fault, San Andreas system, California. Tectonophysics 295, 199–221 (1998).
Google Scholar
Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).
Kanamori, H. & Brodsky, E. E. The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004).
Google Scholar
Dieterich, J. H. in Treatise on Geophysics Vol. 4 (ed. Schubert, G.) 93–110 (Elsevier, 2007).
Tsutsumi, A. & Shimamoto, T. High‐velocity frictional properties of gabbro. Geophys. Res. Lett. 24, 699–702 (1997).
Google Scholar
Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
Google Scholar
Di Toro, G., Goldsby, D. L. & Tullis, T. E. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004).
Google Scholar
Beeler, N. M., Tullis, T. E. & Goldsby, D. L. Constitutive relationships and physical basis of fault strength due to flash heating. J. Geophys. Res. Solid Earth 113, B01401 (2008).
Google Scholar
Tanikawa, W. & Shimamoto, T. Frictional and transport properties of the Chelungpu Fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi‐Chi earthquake. J. Geophys. Res. Solid Earth 114, B01402 (2009).
Google Scholar
Reches, Z. E. & Lockner, D. A. Fault weakening and earthquake instability by powder lubrication. Nature 467, 452–455 (2010).
Google Scholar
Faulkner, D., Mitchell, T., Behnsen, J., Hirose, T. & Shimamoto, T. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys. Res. Lett. 38, L18303 (2011).
Google Scholar
Goldsby, D. L. & Tullis, T. E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science 334, 216–218 (2011).
Google Scholar
Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).
Google Scholar
Kitajima, H., Chester, F. M. & Chester, J. S. Dynamic weakening of gouge layers in high‐speed shear experiments: assessment of temperature‐dependent friction, thermal pressurization, and flash heating. J. Geophys. Res. Solid Earth 116, B08309 (2011).
Google Scholar
Brown, K. M. & Fialko, Y. ‘Melt welt’ mechanism of extreme weakening of gabbro at seismic slip rates. Nature 488, 638–641 (2012).
Google Scholar
Proctor, B. & Di Toro, G. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. J. Geophys. Res. Solid Earth 119, 8107–8131 (2014).
Google Scholar
Verberne, B. et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl. Geophys. 171, 2617–2640 (2014).
Google Scholar
Boulton, C. et al. High-velocity frictional properties of Alpine Fault rocks: mechanical data, microstructural analysis, and implications for rupture propagation. J. Struct. Geol. 97, 71–92 (2017).
Google Scholar
Scuderi, M., Collettini, C., Viti, C., Tinti, E. & Marone, C. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 45, 731–734 (2017).
Rowe, C. D. et al. Earthquake lubrication and healing explained by amorphous nanosilica. Nat. Commun. 10, 320 (2019).
Google Scholar
Bedford, J. D., Faulkner, D. R. & Lapusta, N. Fault rock heterogeneity can produce fault weakness and reduce fault stability. Nat. Commun. 13, 326 (2022).
Google Scholar
McLaskey, G. C., Kilgore, B. D., Lockner, D. A. & Beeler, N. M. Laboratory generated M -6 earthquakes. Pure Appl. Geophys. 171, 2601–2615 (2014).
Google Scholar
Rice, J. R. Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid Earth 111, B05311 (2006).
Google Scholar
Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).
Google Scholar
Jiang, J. & Lapusta, N. Deeper penetration of large earthquakes on seismically quiescent faults. Science 352, 1293–1297 (2016).
Google Scholar
Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).
Google Scholar
Noda, H., Dunham, E. M. & Rice, J. R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J. Geophys. Res. Solid Earth 114, B07302 (2009).
Google Scholar
Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).
Google Scholar
Lu, X., Lapusta, N. & Rosakis, A. J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc. Natl Acad. Sci. USA 104, 18931–18936 (2007).
Google Scholar
Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).
Google Scholar
Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205–208 (2014).
Google Scholar
Svetlizky, I. et al. Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip. Proc. Natl Acad. Sci. USA 113, 542–547 (2016).
Google Scholar
Rubino, V., Rosakis, A. & Lapusta, N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat. Commun. 8, 15991 (2017).
Google Scholar
Guérin‐Marthe, S., Nielsen, S., Bird, R., Giani, S. & Di Toro, G. Earthquake nucleation size: evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124, 689–708 (2019).
Google Scholar
Buijze, L., Guo, Y., Niemeijer, A., Ma, S. & Spiers, C. Nucleation of stick‐slip instability within a large‐scale experimental fault: effects of stress heterogeneities due to loading and gouge layer compaction. J. Geophys. Res. Solid Earth 125, e2019JB018429 (2020).
Google Scholar
Rubino, V., Rosakis, A. & Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59, 551–582 (2019).
Google Scholar
Rubino, V., Rosakis, A. & Lapusta, N. Spatiotemporal properties of sub‐Rayleigh and supershear ruptures inferred from full‐field dynamic imaging of laboratory experiments. J. Geophys. Res. Solid Earth 125, e2019JB018922 (2020).
Google Scholar
Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proc. Natl Acad. Sci. USA 117, 21095–21100 (2020).
Google Scholar
Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66, 639–666 (1976).
Google Scholar
Fossum, A. & Freund, L. Nonuniformly moving shear crack model of a shallow focus earthquake mechanism. J. Geophys. Res. 80, 3343–3347 (1975).
Google Scholar
Kaneko, Y. & Lapusta, N. Variability of earthquake nucleation in continuum models of rate‐and‐state faults and implications for aftershock rates. J. Geophys. Res. Solid Earth 113, B12312 (2008).
Google Scholar
Gori, M., Rubino, V., Rosakis, A. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).
Google Scholar
Perry, S. M., Lambert, V. & Lapusta, N. Nearly magnitude‐invariant stress drops in simulated crack‐like earthquake sequences on rate‐and‐state faults with thermal pressurization of pore fluids. J. Geophys. Res. Solid Earth 125, e2019JB018597 (2020).
Google Scholar
Palmer, A. C. & Rice, J. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. A 332, 527–548 (1973).
Google Scholar
Barras, F. et al. The emergence of crack-like behavior of frictional rupture: edge singularity and energy balance. Earth Planet. Sci. Lett. 531, 115978 (2020).
Google Scholar
Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L. & Beroza, G. C. Foreshocks and mainshock nucleation of the 1999 M w 7.1 Hector Mine, California, Earthquake. J. Geophys. Res. Solid Earth 124, 1569–1582 (2019).
Google Scholar
Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 11, 22 (2020).
Google Scholar
Kilb, D., Gomberg, J. & Bodin, P. Triggering of earthquake aftershocks by dynamic stresses. Nature 408, 570–574 (2000).
Google Scholar
Hill, D. P. & Prejean, S. in Treatise on Geophysics Vol. 4 (ed. Schubert, G.) 93–110 (Elsevier, 2015).
Brodsky, E. E. & van der Elst, N. J. The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 42, 317–339 (2014).
Google Scholar
Johnson, P. A., Savage, H., Knuth, M., Gomberg, J. & Marone, C. Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008).
Google Scholar
Perfettini, H., Schmittbuhl, J. & Cochard, A. Shear and normal load perturbations on a two‐dimensional continuous fault: 2. Dynamic triggering. J. Geophys. Res. Solid Earth 108, 2409 (2003).
Google Scholar
Lui, S. K. & Lapusta, N. Modeling high stress drops, scaling, interaction, and irregularity of repeating earthquake sequences near Parkfield. J. Geophys. Res. Solid Earth 123, 10854–10879 (2018).
Google Scholar
Avouac, J.-P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 43, 233–271 (2015).
Google Scholar
Simons, M. et al. The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. Science 332, 1421–1425 (2011).
Google Scholar
Mello, M., Bhat, H. S., Rosakis, A. J. & Kanamori, H. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics 493, 297–326 (2010).
Google Scholar
Lu, X., Rosakis, A. J. & Lapusta, N. Rupture modes in laboratory earthquakes: effect of fault prestress and nucleation conditions. J. Geophys. Res. Solid Earth 115, B12302 (2010).
Google Scholar
Sutton, M. A., Orteu, J. J. & Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer, 2009).
Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Enhanced digital image correlation analysis of ruptures with enforced traction continuity conditions across interfaces. Appl. Sci. 9, 1625 (2019).
Google Scholar
Rosakis, A., Rubino, V. & Lapusta, N. Recent milestones in unraveling the full-field structure of dynamic shear cracks and fault ruptures in real-time: from photoelasticity to ultrahigh-speed digital image correlation. J. Appl. Mech. 87, 030801 (2020).
Google Scholar
Buades, A., Coll, B. & Morel, J. M. Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008).
Google Scholar
Rubino, V., Lapusta, N., Rosakis, A. J., Leprince, S. & Avouac, J. P. Static laboratory earthquake measurements with the digital image correlation method. Exp. Mech. 55, 77–94 (2015).
Google Scholar
Singh, R. P. & Parameswaran, V. An experimental investigation of dynamic crack propagation in a brittle material reinforced with a ductile layer. Opt. Lasers Eng. 40, 289–306 (2003).
Google Scholar
Rubin, A. M. & Ampuero, J. P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. Solid Earth 110, B11312 (2005).
Google Scholar
Marone, C. & Kilgore, B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618–621 (1993).
Google Scholar
Dieterich, J. H. Potential for geophysical experiments in large scale tests. Geophys. Res. Lett. 8, 653–656 (1981).
Google Scholar
Okubo, P. G. & Dieterich, J. H. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. Solid Earth 89, 5817–5827 (1984).
Google Scholar
Beeler, N. et al. Observed source parameters for dynamic rupture with non-uniform initial stress and relatively high fracture energy. J. Struct. Geol. 38, 77–89 (2012).
Google Scholar
McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).
Google Scholar
Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).
Google Scholar
Dieterich, J. H. in Mechanical Behavior of Crustal Rocks: The Handin Volume (eds Carter, N. L., Friedman, M., Logan, J. M. & Stearns, D. W.) 103–120 (AGU, Washington DC, 1981).
Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. Solid Earth 88, 10359–10370 (1983).
Google Scholar
Blanpied, M., Lockner, D. & Byerlee, J. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett. 18, 609–612 (1991).
Google Scholar
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. Solid Earth 100, 13045–13064 (1995).
Google Scholar
Kato, N. & Tullis, T. E. A composite rate-and state-dependent law for rock friction. Geophys. Res. Lett. 28, 1103–1106 (2001).
Google Scholar
Kato, N. & Tullis, T. E. Numerical simulation of seismic cycles with a composite rate-and state-dependent friction law. Bull. Seismol. Soc. Am. 93, 841–853 (2003).
Google Scholar