Grigg, G. C., Beard, L. A. & Augee, M. L. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 77, 982–997 (2004).
Google Scholar
Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018).
Google Scholar
Bakker, R. T. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238, 81–85 (1972).
Google Scholar
Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012).
Google Scholar
Legendre, L. J., Guénard, G., Botha-Brink, J. & Cubo, J. Palaeohistological evidence for ancestral high metabolic rate in archosaurs. Syst. Biol. 65, 989–996 (2016).
Google Scholar
Amiot, R. et al. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth Planet. Sci. Lett. 246, 41–54 (2006).
Google Scholar
Eagle, R. A. et al. Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science 333, 443–445 (2011).
Google Scholar
Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).
Google Scholar
Paladino, F. V., O’Connor, M. P. & Spotila, J. R. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344, 858–860 (1990).
Google Scholar
Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. Evidence for mesothermy in dinosaurs. Science 344, 1268–1272 (2014).
Google Scholar
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
Google Scholar
Weiss, B. & Laties, V. G. Behavioral thermoregulation. Science 133, 1338–1344 (1961).
Google Scholar
Walter, I. & Seebacher, F. Endothermy in birds: underlying molecular mechanisms. J. Exp. Biol. 212, 2328–2336 (2009).
Google Scholar
Anderson, K. J. & Jetz, W. The broad‐scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318 (2005).
Google Scholar
Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad‐scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).
Google Scholar
Ramos, E. K. S., Freitas, L. & Nery, M. F. The role of selection in the evolution of marine turtles mitogenomes. Sci Rep. 10, 16953 (2020).
Google Scholar
Christian, K. A. & Conley, K. E. Activity and resting metabolism of varanid lizards compared with typical lizards. Aust. J. Zool. 42, 185–193 (1994).
Google Scholar
Tattersall, G. J. et al. Seasonal reproductive endothermy in tegu lizards. Sci. Adv. 2, e1500951 (2016).
Google Scholar
Pamplona, R. Advanced lipoxidation end-products. Chem. Biol. Interact. 192, 14–20 (2011).
Google Scholar
Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J. Am. Soc. Nephrol. 11, 1744–1752 (2000).
Google Scholar
Vistoli, G. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res. 47, 3–27 (2013).
Google Scholar
Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).
Google Scholar
Wiemann, J., Crawford, J. M. & Briggs, D. E. G. Phylogenetic and physiological signals in metazoan fossil biomolecules. Sci. Adv. 6, eaba6883 (2020).
Google Scholar
Wiemann, J. & Briggs, D. E. G. Raman spectroscopy is a powerful tool in molecular paleobiology: an analytical response to Alleon et al. (https://doi.org/10.1002/bies.202000295). Bioessays 44, 2100070 (2022).
Barrick, R. E. & Showers, W. J. Thermophysiology of Tyrannosaurus rex: evidence from oxygen isotopes. Science 265, 222–224 (1994).
Google Scholar
Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).
Google Scholar
Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).
Google Scholar
Erickson, G. M. On dinosaur growth. Annu. Rev. Earth Planet. Sci. 42, 675–697 (2014).
Google Scholar
Wiemann, J., Yang, T.-R. & Norell, M. A. Dinosaur egg colour had a single evolutionary origin. Nature 563, 555–558 (2018).
Google Scholar
Norell, M. A. et al. The first dinosaur egg was soft. Nature 583, 406–410 (2020).
Google Scholar
Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).
Google Scholar
Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K. U. Rapid resurgence of marine productivity after the Cretaceous–Paleogene mass extinction. Science 326, 129–132 (2009).
Google Scholar
Hull, P. M. et al. On impact and volcanism across the Cretaceous–Paleogene boundary. Science 367, 266–272 (2020).
Google Scholar
Plet, C. et al. Palaeobiology of red and white blood cell-like structures, collagen and cholesterol in an ichthyosaur bone. Sci Rep. 7, 13776 (2017).
Google Scholar
Barthel, H. J., Fougerouse, D., Geisler, T. & Rust, J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS ONE 15, e0228843 (2020).
Google Scholar
Kourkoumelis, N., Polymeros, A. & Tzaphlidou, M. Background estimation of biomedical Raman spectra using a geometric approach. J. Spectrosc. 27, 311–317 (2012).