Broecker, W. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change (Princeton Univ. Press, 2010).
Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Past to Present (Cambridge Univ. Press, 2019).This book provides a review of carbon inside the Earth, including its quantities, movements, forms, origins, changes over time and impacts on planetary processes.
Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).
Google Scholar
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).
Google Scholar
Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for global average surface temperature, atmospheric CO2concentration and predictions of box models of the long-term carbon cycle.
Google Scholar
Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).
Berner, R. A. The Phanerozoic Carbon Cycle: CO2and O2 (Oxford Univ. Press, 2004).
Garrels, R. M. & MacKenzie, F. T. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).
Google Scholar
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This review summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be efficiently recycled from the slab and potentially stored in the arc lithosphere.
Google Scholar
Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).
Google Scholar
Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A review of the present-day processes and fluxes involved in subducting and recycling carbon.
Google Scholar
Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).
Google Scholar
Bekaert, D. et al. Subduction-driven volatile recycling: a global mass balance. Ann. Rev. Earth Sci. 49, 37–70 (2021). This review provides an overview of Earth’s volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs through subduction.
Google Scholar
Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 263 (2019).
Google Scholar
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). A global plate tectonic model for the Mesozoic and Cenozoic eras, including the evolution of plate boundaries and plate deformation along rifts and orogens, which forms the tectonic basis for computing carbon fluxes through time.
Google Scholar
Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a model for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction through time.
Google Scholar
Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling data are used to model how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends on crustal age and bottom-water temperature.
Google Scholar
Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).
Google Scholar
Faccenda, M. Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical models, together with geological and geophysical observations, reveal how slab bending during subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.
Google Scholar
National Geophysical Data Center/World Data Service (NGDC/WDS). NCEI/WDS Global Significant Earthquake Database (NOAA National Centers for Environmental Information, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K
Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake locations in the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).
Google Scholar
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A review of the parameters controlling the tectonic accretion and erosion of sediments along subduction zones.
Google Scholar
Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).
Google Scholar
Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 332 (2019). A model explaining how seafloor spreading rates have governed the storage and subduction of serpentinite in the oceanic lithosphere through time.
Google Scholar
Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).
Google Scholar
Le Voyer, M., Kelley, K. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).
Google Scholar
Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).
Google Scholar
Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).
Google Scholar
Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Solid Earth 103, 9857–9866 (1998).
Google Scholar
Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).
Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
Google Scholar
Hay, W. W. in Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 509–528 (Springer, 2004).
Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publication No. 21, 1986).
Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).
Google Scholar
Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).
Google Scholar
Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).
Google Scholar
Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).
Google Scholar
Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).
Google Scholar
Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001). The authors use phase equilibria to quantify the evolution of CO2and water through subduction zone metamorphism of deep-sea carbonates, which are a major source for carbon released by arc volcanoes.
Google Scholar
Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).
Google Scholar
Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).
Google Scholar
Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).
Google Scholar
Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).
Google Scholar
Grassi, D., Schmidt, M. W. & Günther, D. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327, 84–96 (2012).
Google Scholar
Sun, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).
Google Scholar
East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).
Google Scholar
Safonova, I., Litasov, K. & Maruyama, S. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geosci. Front. 6, 679–685 (2015).
Google Scholar
Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).
Google Scholar
Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103–119 (2005).
Google Scholar
Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism in the South China Block. Earth Sci. Rev. 217, 103605 (2021).
Google Scholar
Pepper, M. B. Magmatic history and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532–1555 (2014).
Google Scholar
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).
Google Scholar
Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).
Google Scholar
Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Elements 15, 377–380 (2019).
Google Scholar
Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).
Google Scholar
Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals in the cool interior of the subducting plate over large distances from the trench and eventual partial melting of these minerals can drive diamond formation.
Google Scholar
Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524, 339–342 (2015).
Google Scholar
Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from source to surface: insights from experiments. Elements 15, 393–398 (2019).
Google Scholar
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
Google Scholar
Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: a review. Lithos 170, 208–223 (2013).
Google Scholar
Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold source. Ore Geol. Rev. 127, 103829 (2020).
Google Scholar
Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).
Google Scholar
Haas, J. R., Shock, E. L. & Sassani, D. C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).
Google Scholar
Phillips, G. N. & Evans, K. A. Role of CO2 in the formation of gold deposits. Nature 429, 860–863 (2004).
Google Scholar
Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle feedback loops involved in the whole Earth-system evolution and climate change.
Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).
Google Scholar
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
Google Scholar
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
Google Scholar
Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).
Google Scholar
Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle models. Gondwana Res. 97, 176–203 (2021).
Google Scholar
Wilkinson, B. H. & Walker, J. C. Phanerozoic cycling of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).
Google Scholar
Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This author recognized that the gradual shift of carbonate deposition from continental to pelagic settings must have increased the subduction of carbonates and their metamorphic decarbonation, resulting in a Cenozoic increase in CO2degassing from volcanic arcs.
Google Scholar
Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).
Google Scholar
Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).
Google Scholar
Gernon, T. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).
Google Scholar
McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).
Google Scholar
Pall, J. et al. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. 14, 857–870 (2018).
Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).
Google Scholar
Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. Global Planet. Change 173, 1–14 (2019).
Google Scholar
Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution. Geol. Mag. 156, 355–365 (2019).
Google Scholar
Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).
Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
Google Scholar
Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).
Google Scholar
Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).
Google Scholar
Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).
Google Scholar
Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).
Google Scholar
Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).
Google Scholar
Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).
Google Scholar
Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).
Google Scholar
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Google Scholar
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
Google Scholar
Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).
Google Scholar
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a global set of kinematically defined subduction-zone segments provides insights into the sources of fluid and melt.
Google Scholar
Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim. Past Discuss. 17, 203–227 (2021).
Google Scholar
Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).
Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
Google Scholar
Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).
Google Scholar