• Broecker, W. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change (Princeton Univ. Press, 2010).

  • Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Past to Present (Cambridge Univ. Press, 2019).This book provides a review of carbon inside the Earth, including its quantities, movements, forms, origins, changes over time and impacts on planetary processes.

  • Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for global average surface temperature, atmospheric CO2concentration and predictions of box models of the long-term carbon cycle.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).

  • Berner, R. A. The Phanerozoic Carbon Cycle: CO2and O2 (Oxford Univ. Press, 2004).

  • Garrels, R. M. & MacKenzie, F. T. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).

    Article 

    Google Scholar 

  • Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This review summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be efficiently recycled from the slab and potentially stored in the arc lithosphere.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A review of the present-day processes and fluxes involved in subducting and recycling carbon.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Bekaert, D. et al. Subduction-driven volatile recycling: a global mass balance. Ann. Rev. Earth Sci. 49, 37–70 (2021). This review provides an overview of Earth’s volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs through subduction.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 263 (2019).

    ADS 
    Article 

    Google Scholar 

  • Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). A global plate tectonic model for the Mesozoic and Cenozoic eras, including the evolution of plate boundaries and plate deformation along rifts and orogens, which forms the tectonic basis for computing carbon fluxes through time.

    ADS 
    Article 

    Google Scholar 

  • Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a model for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction through time.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling data are used to model how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends on crustal age and bottom-water temperature.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

    ADS 
    Article 

    Google Scholar 

  • Faccenda, M. Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical models, together with geological and geophysical observations, reveal how slab bending during subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.

    ADS 
    Article 

    Google Scholar 

  • National Geophysical Data Center/World Data Service (NGDC/WDS). NCEI/WDS Global Significant Earthquake Database (NOAA National Centers for Environmental Information, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K

  • Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake locations in the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A review of the parameters controlling the tectonic accretion and erosion of sediments along subduction zones.

    ADS 
    Article 

    Google Scholar 

  • Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 332 (2019). A model explaining how seafloor spreading rates have governed the storage and subduction of serpentinite in the oceanic lithosphere through time.

    ADS 
    Article 

    Google Scholar 

  • Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Le Voyer, M., Kelley, K. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).

    CAS 
    Article 

    Google Scholar 

  • Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Solid Earth 103, 9857–9866 (1998).

    Article 

    Google Scholar 

  • Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).

  • Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hay, W. W. in Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 509–528 (Springer, 2004).

  • Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publication No. 21, 1986).

  • Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).

    ADS 
    Article 

    Google Scholar 

  • Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001). The authors use phase equilibria to quantify the evolution of CO2and water through subduction zone metamorphism of deep-sea carbonates, which are a major source for carbon released by arc volcanoes.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grassi, D., Schmidt, M. W. & Günther, D. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327, 84–96 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sun, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).

    CAS 
    Article 

    Google Scholar 

  • East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).

    ADS 
    Article 

    Google Scholar 

  • Safonova, I., Litasov, K. & Maruyama, S. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geosci. Front. 6, 679–685 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103–119 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism in the South China Block. Earth Sci. Rev. 217, 103605 (2021).

    Article 

    Google Scholar 

  • Pepper, M. B. Magmatic history and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532–1555 (2014).

    ADS 
    Article 

    Google Scholar 

  • Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Elements 15, 377–380 (2019).

    CAS 
    Article 

    Google Scholar 

  • Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals in the cool interior of the subducting plate over large distances from the trench and eventual partial melting of these minerals can drive diamond formation.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524, 339–342 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from source to surface: insights from experiments. Elements 15, 393–398 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: a review. Lithos 170, 208–223 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold source. Ore Geol. Rev. 127, 103829 (2020).

    Article 

    Google Scholar 

  • Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Haas, J. R., Shock, E. L. & Sassani, D. C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Phillips, G. N. & Evans, K. A. Role of CO2 in the formation of gold deposits. Nature 429, 860–863 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle feedback loops involved in the whole Earth-system evolution and climate change.

  • Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle models. Gondwana Res. 97, 176–203 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wilkinson, B. H. & Walker, J. C. Phanerozoic cycling of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This author recognized that the gradual shift of carbonate deposition from continental to pelagic settings must have increased the subduction of carbonates and their metamorphic decarbonation, resulting in a Cenozoic increase in CO2degassing from volcanic arcs.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gernon, T. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pall, J. et al. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. 14, 857–870 (2018).

  • Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. Global Planet. Change 173, 1–14 (2019).

    ADS 
    Article 

    Google Scholar 

  • Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution. Geol. Mag. 156, 355–365 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    ADS 
    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).

    ADS 
    Article 

    Google Scholar 

  • Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    ADS 
    Article 

    Google Scholar 

  • Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a global set of kinematically defined subduction-zone segments provides insights into the sources of fluid and melt.

    ADS 
    Article 

    Google Scholar 

  • Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim. Past Discuss. 17, 203–227 (2021).

    Article 

    Google Scholar 

  • Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).

    Google Scholar 

  • Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).

    ADS 
    Article 

    Google Scholar 

  • Source link

    Previous articleTurkish english language students facing six month delays for Irish visas
    Next articleDietitian Recommended Low-Carb Cereals | POPSUGAR Fitness